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Abstract. Teaching robots to fold, drape, or reposition deformable ob-
jects such as cloth will unlock a variety of automation applications. While
remarkable progress has been made for rigid object manipulation, ma-
nipulating deformable objects poses unique challenges, including frequent
occlusions, infinite-dimensional state spaces and complex dynamics. Just
as object pose estimation and tracking have aided robots for rigid ma-
nipulation, dense 3D tracking (scene flow) of highly deformable objects
will enable new applications in robotics while aiding existing approaches,
such as imitation learning or creating digital twins with real2sim transfer.
We propose DeformGS, an approach to recover scene flow in highly de-
formable scenes, using simultaneous video captures of a dynamic scene
from multiple cameras. DeformGS builds on recent advances in Gaus-
sian splatting, a method that learns the properties of a large number of
Gaussians for state-of-the-art and fast novel-view synthesis. DeformGS
learns a deformation function to project a set of Gaussians with canonical
properties into world space. The deformation function uses a neural-voxel
encoding and a multilayer perceptron (MLP) to infer Gaussian position,
rotation, and a shadow scalar. We enforce physics-inspired regulariza-
tion terms based on conservation of momentum and isometry, which
leads to trajectories with smaller trajectory errors. We also leverage ex-
isting foundation models SAM and XMEM to produce noisy masks, and
learn a per-Gaussian mask for better physics-inspired regularization. De-
formGS achieves high-quality 3D tracking on highly deformable scenes
with shadows and occlusions. In experiments, DeformGS improves 3D
tracking by an average of 55.8 % compared to the state-of-the-art. With
sufficient texture, DeformGS achieves a median tracking error of 3.3 mm
on a cloth of 1.5 × 1.5 m in area. Website: https://deformgs.github.io

Keywords: Perception, Machine Learning in Robotics , Manipulation
& Grasping
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Fig. 1: We propose DeformGS, a method that improves state-of-the-art methods
for accurate 3D point tracking in highly deformable scenes. This figure shows
the rendering and tracking of DeformGS in the six dynamic Blender [9] scenes
used for evaluation. We will refer to the scenes in this Figure as Scenes 1, 2, 3,
4, 5 and 6 ordered from left to right.

1 Introduction

Recent advances in robot learning have demonstrated impressive performance on
challenging tasks, including rigid and deformable object manipulation. Scaling
these approaches to deployment will require an improvement in robustness and
learning from few demonstrations. A promising avenue for improving in robot
learning performance are intermediate representations and foundation models,
including 6D object pose estimation [10, 11, 27, 42, 50, 51, 55], semantic latent
features [35], and 2D pixel-wise tracking [21,52]. However, perception and repre-
sentations that will lead to robust manipulation of deformable objects remains
an open challenge, due to self-occlusions, shadows, and varying (or lack of) tex-
tures.

Three-dimensional dense point tracking, or 3D scene flow, is a useful rep-
resentation for robot manipulation, as it provides flexibility to represent high-
dimensional dynamic state changes, while the deformable objects drops, deforms,
and drapes during manipulation. In particular, dense 3D scene flow can be an
input to imitation learning policies [3, 52], can be used to learn a transition
model [40], to identify and track task-relevant key points, or to create a digi-
tal twin through real2sim transfer. Recent work in monocular tracking has seen
improvements in performance on datasets such as TAP-Vid [13], but it remains
unclear how to effectively lift from 2D tracking to 3D for robotic spatial under-
standing in challenging highly deformable scenes.
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To overcome these limitations, Gaussian Splatting provides a promising av-
enue. Recent work demonstrated Gaussian Splatting [22, 23] can yield state-of-
the-art novel-view synthesis and rendering speeds exceeding 100 fps. Concretely,
3D Gaussian Splatting uses a fast differentiable renderer to fit the colors, po-
sitions, and covariances of a set of Gaussians. An extension of 3D Gaussian
splatting [29] showed dynamic scenes can be modeled by explicitly optimizing
the properties of Gaussians over time, resulting in novel-view synthesis and scene
flow.

Explicitly optimizing the Gaussian pose as in Dynamic 3D Gaussians [29]
may result in degraded performance with large deformations and shadows. The
Gaussian properties may converge to local optima, especially in scenes with large
deformations, strong shadows, and occlusions.

We propose DeformGS, a method that uses time-synchronized image frames
from a calibrated multi-camera setup to track 3D geometries of deformable
objects as they move through shadows and occlusions. DeformGS learns the
canonical state of a set of Gaussians and a deformation function that maps the
Gaussians into world space. This enables tracking by recovering scene flow, and
novel-view rendering (through splatting) using a fast differentiable rasterizer.

We evaluate DeformGS in six photo-realistic synthetic scenes of varying diffi-
culty. The scenes contain large deformations, shadows, and occlusions (Figure 1
shows the scenes and tracking trajectories computed by DeformGS). Empirical
results show that DeformGS infers 55.8% more accurate 3D tracking results
compared to previous state-of-the-art [29, 53]. In a scene with a 1.5 m × 1.5
m cloth (i.e., Scene 1), DeformGS can track cloth deformation with as low as
3.3 mm median tracking error.

We also evaluate DeformGS in the real world on the Robo360 [26] dataset. We
show qualitative results for tracking rigid and deformable objects in cluttered
scenes, and study two robotics applications: (1) real2sim transfer to create a
digital twin, and (2) tracking task-relevant keypoints for downstream grasping
applications.

In summary, our contributions are as follows:

– We provide the first approach designed to accurately perform 3D dense track-
ing for deformable objects using 4D Gaussians.

– We provide experiments that suggest state-of-the-art performance in simul-
taneous 3D metric tracking and novel view synthesis. DeformGS improves
tracking accuracy by an average of 55.8% in synthetic experiments and
demonstrates robust 3D tracking in the real world for deformable objects.
The latter can be exploited as a representation for imitation learning and
represents a new method for building digital twins.

– A set of six synthetic scenes with large deformations, strong shadows, and
occlusions. We will open-source the scenes and as well as the source code.
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2 Related Work

2.1 Neural Rendering for Novel View Synthesis

DeformGS builds on prior work in novel-view synthesis, and uses photometric
consistency as a signal to achieve 3D tracking. A popular novel view synthesis ap-
proach is NeRF [30]. It uses neural networks to learn scene representations that
are capable of photo-realistic novel view reconstruction. Particle-based methods
use a more explicit representation than typical NeRF-based approaches. Defor-
mGS builds on 3D Gaussian Splatting [22, 23] which belongs to the latter care-
gory. [22] proposed a differential rasterizer to render a large number of Gaussian
‘splats,’ each with their state including color, position, and covariance matrix.
Contrary to the NeRF-based approaches, Gaussian splatting achieves real-time
rendering of novel views with state-of-the-art performance.

2.2 Dynamic Novel View Synthesis

The assumption of static scenes in neural rendering approaches prevents ap-
plication to real-world scenarios with moving objects or humans, such as the
dynamic and deformable scenes in this work. One line of work to address this
assumption is adding a time dimension to NeRF modeling [15, 18, 25, 54]. Prior
works either condition the neural field on explicit time input or a time embed-
ding. Another line of work learns a deformation field to map 4D points into a
canonical space [36, 37], i.e., every 4D point in space and time maps to a 3D
point in a canonical NeRF. DeVRF [28] proposed to model the 3D canonical
space and 4D deformation field of a dynamic, non-rigid scene with explicit and
discrete voxel-based representations.

Several recent works extend the above approaches to 3D Gaussian splatting.
Dynamic 3D Gaussians [29] explicitly model the position and covariance matrix
of each Gaussian at each time step. This method struggles in dynamic scenes
with large deformations, strong shadows, or occlusions. We build on another
recent work, 4D Gaussian splatting [53], which uses feature encoding techniques
proposed in HexPlanes [6] and K-planes [17], and learns a deformation field
instead.

2.3 Point Tracking

Point tracking methods, usually trained on large amounts of data, aided previ-
ous 3D tracking approaches by providing a strong prior [28]. We also construct
several baselines that include point tracking methods (Section 6). Prior work
on point tracking often studies tracking 2D points across video frames, where
a dominant approach is training models on large-scale synthetic datasets con-
taining ground-truth point trajectories [12,14,20,57] or dense optical flows [48].
Optical flow [2, 43] or scene flow [1, 19, 45, 46] can also be viewed as single-step
point-tracking in 2D and 3D, respectively.
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Another relevant line of work tightly couples dynamic scene reconstruction
and motion estimation of non-rigid objects. A predominant setup is fusing RGBD
frames from videos of dynamic scenes or objects [33]. Tracking or correspondence-
matching methods see a progression from template-based tracking of objects with
known shape or kinematics priors (such as human hand, face or body poses) [7,
34,39], to more general shapes or scenes [4,5,58]. The main difference from these
works is that we do not use depth input, and perform more rigorous quantitative
evaluations on tracking specific points.

Most related to ours is the more recent methods that obtain tracking from
neural scene rendering. DCT-NeRF [47] learns a coordinate-based neural scene
representation that outputs continuous 3D trajectories across the whole input
sequence. PREF [41] optimizes a dynamic space-time neural field with self-
supervised motion prediction loss. Most recently, Luiten et al. [29] models dy-
namic 3D Gaussians explicitly across timestamps to achieve tracking. While our
work also leverages 3D Gaussians, in contrary to the explicit modeling in Dy-
namic 3D Gaussians [29], we learn a deformation function that scales much better
with video length, and we focus on deformable objects that are more challenging
than the ball-throwing videos used in [29].

2.4 Tracking for Robotics

A core motivation for studying point tracking is the potential it can unlock
for robotics applications: for example, RoboTAP [44] shows pre-trained point-
tracking models improve sample efficiency of visual imitation learning. It de-
tects task-relevant keypoints, infers where those points should move to, and
computes an action that moves them there. Any-point [52] learns to predict
keypoint tracks, but conditioned on language inputs. Track2Act [3] builds on
Any-point by learning a generalizable zero-shot policy, which only needs a few
embodiment-specific demonstrations.

Rigid-body, or 6D, pose tracking and estimation has a rich history in robotics
due to it foundational ability to model the world for a robot to manipulate [10,
11, 27, 31, 42, 49–51, 55]. In this work, we propose a deformable object analog
of 6D pose tracking with the aim of extending successes to deformable object
manipulation.

While existing methods leverage 2D tracking, and learn an additional policy
to output robot actions, DeformGS provides a more powerful representation that
allows for reasoning directly in 3D, instead of in the 2D image space.

3 Problem Statement

Given a set of timed image sequences captured from multiple cameras with
known intrinsics and extrinsics, the objective is to learn a model that performs
3D tracking and novel view synthesis. Each image sequence is captured over the
same time interval t ∈ [0, H].

3D Tracking The primary goal is to recover the trajectory of any point in
a dynamic scene by modeling the deformation of Gaussians over time. Thus, the
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objective is to find a function xt = Q(x0, t0, t), where x0 ∈ R3 is the location
of a point of interest at a chosen time t0 ∈ [0, H], while xt ∈ R3 is the location
of the same point at another chosen time t ∈ [0, H]. The function Q is valid for
any point x0 and any t ∈ [0, H], allowing for tracking of any point in space.

Novel View Synthesis The secondary goal is to achieve accurate scene
flow by using photometric consistency as a supervision signal. To achieve this,
the objective is to recover novel views from arbitrary viewpoints. The extrinsics
at any viewpoint can be captured by matrix P , with P = K[R|T ]. Here K is
the intrinsics matrix, R is the rotation matrix of a camera with respect to the
world frame, and T is the translation vector with respect to the world frame.
Concretely, the goal is to learn a function V such that IP,t = V (P, t), where IP,t

is an image rendered from a camera with extrinsics P at time t. As with the
tracking objective, the time parameter is valid for any t ∈ [0, H].

4 Preliminary

4.1 Gaussian Splatting

3D Gaussian Splatting [22] deploys an explicit scene representation by rendering
a large set of Gaussians each defined by their mean position µ and covariance
matrix Σ. Given x ∈ R3, its Gaussian is

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ),

Directly optimizing the covariance matrix Σ would lead to infeasible covari-
ance matrices, as they must be positive semi-definite to have a physical meaning.
Instead, Gaussian Splatting [22] proposes to decompose Σ into a rotation R and
scale S for each Gaussian:

Σ = RSSTRT ,

and optimize R, S, and the mean position.
Given the transformation W of a camera, the covariance matrix can be pro-

jected into image space as

Σ′ = JWΣWTJT ,

where J is the Jacobian of the affine approximation of the projective transfor-
mation.

During rendering, we compute the color C of a pixel by blending N ordered
Gaussians overlapping the pixel :

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj).

where ci is the color of each Gaussian and αi is given by evaluating a 2D Gaussian
with covariance multiplied with a learned per-Gaussian opacity σ [22, 56]. This
representation allows for fast rendering of novel views, and aims to reconstruct
the geometry of the scene.
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Fig. 2: DeformGS maps a set of Gausians with canonical properties to metric
space using a deformation function F . The deformation function takes in the
position of a Gaussian (x, y, z) and a queried timestamp t, to infer shadow s,
rotation r′ and metric position x′. During training, we use the metric positions
and rotations to regularize the deformation function, considering the state at
t = {i− 1, i, i+ 1} with Gaussian metric states P ′

t−1, P
′
t , P

′
t+1

4.2 Deformation Fields for Dynamic Scenes

Prior work showed that a deformation function combined with a static NeRF
in a canonical space can enable novel view synthesis in dynamic scenes. The
deformation function FNeRF : R3 → R3 deforms a point in world coordinates
(x′) into a point in canonical space (x).

Prior work formulated FNeRF as an MLP [38] and a multi-resolution voxel
grid [16]. Wu et al. [53] applied a similar approach to arrive at Gaussian splatting
of dynamic scenes. Given the state of a single canonical Gaussian, defined by
P = [µ, S,R, σ, C] at time t, a deformation function is

P ′ = F4DGS(P, t),

where F4DGS, similar to the Hexplanes [6], contains a neural-voxel encoding in
space and time. 4D-GS [53] starts with a coarse stage for initializing the canonical
space, by setting P ′ = P , bypassing the deformation field and learning canonical
properties directly. During the fine stage we learn the deformation function.

We propose DeformGS (Figure 2), based on 4D-Gaussians [53], to render
novel views in dynamic scenes. The key differences with 4D-GS are: (1) we pro-
pose an intuitive method to track canonical Gaussians in world coordinates using
a continuous deformation function, (2) the output of the deformation function is
different, e.g., DeformGS infers shadows and does not alter opacity or scale over
time, and (3) using the method shown in Figure 3, we enforce physics-inspired
regularization losses on the 3D trajectories of Gaussians.

5 Method

DeformGS achieves novel-view synthesis and high-quality 3D tracking using a
canonical space of Gaussians and a deformation function to deform them to
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world space (Section 5.1). To incentivize learning physically plausible deforma-
tions, DeformGS introduces several regularization terms (Section 5.2). Finally,
DeformGS learns 3D masks to focus regularization and Gaussian deformation
on dynamic parts of the scene (Section 5.3).

5.1 4D Gaussian Splatting

Canonical Neural Voxel Encoding. As with prior work, DeformGS learns a
deformation function F from a canonical space. We use a neural-voxel encod-
ing to ensure F has sufficient capacity to capture complex deformations. Prior
work [16,17,32,53] showed that neural-voxel encodings improve the speed and ac-
curacy of novel-view synthesis in dynamic scenes. We leverage HexPlanes [6,53]
to increase capacity for simultaneous 3D tracking and novel-view synthesis.

Figure 2 shows an overview of the canonical neural-voxel encoding. Each of
the six voxel modules can be defined as R(i, j) ∈ Rh×lNi×lNj . Here {i, j} ∈
{(x, y), (x, z), (y, z), (x, t), (y, t), (z, t)}, i.e., we adopt HexPlanes in all possible
combinations. h is the size of each feature vector in the voxel, Ni, Nj are the sizes
of the HexPlanes in each dimension, l is the upsampling scale. In every module,
each plane has a different upsampling scale l. To query the multi-resolution
voxel grids, we query each plane using bilinear interpolation to finally arrive at
a feature vector used by the deformation MLP.

Deformation MLP. The deformation MLP takes in the voxel encoding and
uses the encoding to deform the canonical Gaussians into world coordinates. Fig-
ure 2 shows the deformation MLP, which infers position, rotation, and a shadow
scalar, given a feature vector from the neural voxel encoding. We choose this set
of outputs to model rigid-body transformations of each Gaussian and changes
in illumination. Modeling changes in illumination is critical in the presence of
shadows. We multiply the RGB color of each Gaussian by the shadow scalar
s ∈ [0, 1], and the shadow scalar is in the range [0, 1] by feeding the output of
the MLP through a sigmoid activation function.

Next, we deform the Gaussians, modifying their mean positions µ and ro-
tation R, and arrive at a set of Gaussians in the world space each with state
P . The differentiable rasterizer from Gaussian Splatting [22] then renders the
Gaussians to retrieve gradients for regressing both the canonical Gaussian states
and the parameters of the deformation function.

Unlike 4D-Gaussians [53], we propose to not infer opacity or scale using the
deformation field. Optimizing for opacity and scale over time would allow Gaus-
sians to disappear or appear instead of following the motion, which would make
tracking less accurate. This design choice reduces the capacity of the deformation
function, hence a lower view reconstruction quality as compared to 4D-Gaussians
might be expected.
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Fig. 3: DeformGS uses three adjacent timesteps at every iteration to enforce
physics-inspired regularization terms. All Gaussians are deformed to world space
using the deformation function F , and rasterized to compute the photometric
loss and its gradients. The positions of the Gaussians are used to compute the
regularization terms based on local isometry and conservation of momentum
(Section 5.2).

5.2 3D Tracking using 4D Gaussians

Physics-Inspired Losses. Figure 3 shows the process of tracking Gaussians
from the canonical space in world space. By querying the deformation function
F , we can track the position of a Gaussian along the entire trajectory.

Without additional supervision, this approach will not necessarily converge
to physically plausible deformations. Especially when objects include areas with
little texture and uniform color, the solution space for all deformations is un-
derconstrained by photometric consistency alone. To learn a more grounded
deformation function, we propose regularization terms inspired by physics.

After empirically evaluating several combinations of regularization terms, we
adopt the isometry loss proposed in [29] and add a conservation of momentum
term. The first term captures a local isometry loss, which we compute based on
the state of the k nearest neighboring (KNN) Gaussians.

Local Isometry Loss We incentivize the Gaussians to keep the relative
position of the k nearest neighbors constant w.r.t. t = 0. With sufficient defor-
mation, this assumption will be broken at a larger scale, but at a local scale,
this regularization avoids drift from the ground-truth trajectory. The isometry
loss is

Liso
t =

1

k|P|
∑
i∈P

∑
j∈knni

wi,j

∣∣∥µj,0−µi,0∥2 − ∥µj,t−µi,t∥2
∣∣ .

with
wi,j = exp

(
−λw∥µj,0 − µi,0∥22

)
,

Here P is the set of all Gaussians.
Conservation of Momentum We add a term to incentivize conservation

of momentum. Newton’s first law states objects without external forces applied,
given some mass m and velocity vector v, maintain their momentum m · v. We
introduce the regularization term

Lmomentum
i,t = ∥µi,t+1 + µi,t−1 − 2µi,t∥1.
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This term incentivizes a constant-velocity vector and has the effect of imposing
a low-pass filter on the 3D trajectories. It smooths out trajectories with many
sudden changes of direction and magnitude (momentum).

5.3 Learning 3D Masks

Learning accurate 3D tracking in scenes with a mix of static and dynamic ob-
jects and rich textures poses significant challenges, mainly: (1) imposing physics-
inspired regularization terms on all Gaussians may cause issues when dynamic
and static objects interact, and (2) modeling millions of dynamic Gaussians can
become a significant computational burden.

To address this, DeformGS takes noisy masks of dynamic scene components
such as cloth, and learns what Gaussians are dynamic. More formally, we render
a mask M by

M =
∑
i∈N

miαi

i−1∏
j=1

(1− αj).

where mi is a per-Gaussian property, with mi ∈ [0, 1]. We then add a regulariza-
tion term to the loss function s.t. mi is regressed to best reconstruct M. Finally,
DeformGS uses mi to select a subset of Gaussians to be dynamic, and applies
regularization terms only to those Gaussians.

6 Experiments

We evaluate DeformGS on synthetic and real-world datasets of scenes with highly
deformable objects. Section 6.1 provides details on the simulation experiment
setup, evaluation metrics, and baseline methods. Section 6.2 reports evaluation
results from the compared methods and provides analysis. Section 6.3 lists the
real-world evaluation setup, and finally in Section 6.4 we provide a qualitative
evaluation of the performance of DeformGS in the real-world.

6.1 Simulation Experiment Setup

Dataset Preparation We use Blender to model dynamic cloth sequences and
render photo-realistic images. We create 6 distinct scenes, each containing a
different cloth with distinct visual and physical properties, and we render images
from 100 different camera views and 40 consecutive time steps for training for a
total of 4,000 images. The cloth deformations are introduced by dropping each
cloth over one or a few invisible balls onto a ground plane or by constraining the
cloth at an attachment point. We obtain ground-truth trajectories by tracking
the mesh vertices of deformable objects in Blender. Every scene contains a single
deformable object and a rendered background.

Oracle Baselines We compare DeformGS to 2D tracking oracle models
which have access to ground truth depth and trajectory information. While
these methods were not designed for 3D tracking, they are well-known for their
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impressive 2D tracking performance. Their numbers aid in putting the tracking
performance of the other baselines into context. We run RAFT [43] on all views,
project tracking to 3D using ground truth depth, and report the mean results as
the RAFT model. We provide two additional oracle methods which have access to
the ground-truth trajectories as well. RAFT Oracle first evaluates on all views, to
then output only the trajectories from the view with the lowest median trajectory
error. We also report OmniMotion Oracle, which runs OmniMotion [48] on the
viewpoint with the lowest MTE for RAFT. Training OmniMotion takes roughly
12–13 hours on an Nvidia RTX 4090 GPU, making inference on all 100 views
impractical. The numbers from RAFT Oracle and OmniMotion Oracle are not
an apples-to-apples comparison with the other methods, as to obtain their result
they had to access privileged ground-truth trajectories.

Gaussian Splatting Baselines (1) Dynamic 3D Gaussians (DynaGS ) [29],
which also builds on 3D Gaussian splatting for dynamic novel-view synthesis,
except it explicitly models the positions and rotations of each Gaussian at each
time-step. This results in straightforward tracking of any point via finding the
trajectory of the learned Gaussian closest to a queried point. Although the orig-
inal paper assumes a known point cloud at the first frame, we instead use a
randomly sampled point cloud for a fair comparison, with DynaGS and Defor-
mGS both not using depth information.

(2) Finally, we compare to tracking using 4D-Gaussians [53] (4D-GS ). We
add the approach for 3D tracking of canonical Gaussian, as shown in Figure 3, to
extract 3D trajectories from a learning view synthesis model. Comparing to 4D-
GS serves to show the impact of the changes made in the model architecture,
the regularization terms, and using learning per-Gaussian masks to arrive at
DeformGS.

Training and Evaluation Setup We create a dataset of 6 dynamic cloth
scenes, each with varying physical and visual properties (Figure 1). For Defor-
mGS and 4D Gaussians, we perform 30,000 training iterations, and set point
cloud pruning interval to 100, voxel plane resolution to [64, 64], and multi-
resolution upsampling to levels L = {1, 2, 4, 8}. We set the regularization hyper
parameters (Section 5.2) for all synthetic scenes to λw = 2,000, λmomentum =
0.03, λiso = 0.3, and k = 20 for KNN. We keep all hyper parameters the same
for real-world scenes, but increase the regularization terms for momentum and
isometry loss. We generate the masks with segment anything (SAM) [24] for the
initial frame, and use XMem [8] to propagate to future frames.

For DynaGS, we set λrigid = 4, λw = 2,000,λiso = 2.0, and k = 20, as in the
open-source code.

We evaluate each compared method on 1,000 randomly sampled points on
each cloth.

6.2 Simulation Results

3D Point Tracking Following prior work [29,57], we report median trajectory
error (MTE), position accuracy (δ), and the survival rate with a threshold of 0.5
[m] [29].
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Metric Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Mean

3D MTE [mm] ↓

RAFT [43] a 67.264 89.944 220.125 177.909 84.593 23.422 110.543
RAFT Oracle [43]ab 3.381 26.956 58.971 12.481 3.930 3.192 18.152
OmniMotion Oracle [48] ab 0.535 14.513 39.958 4.556 2.487 2.011 10.677

DynaGS [29] 24.233 81.119 464.64 54.074 34.985 36.101 115.859
4D-GS [53] 4.645 95.032 223.839 27.441 14.091 11.619 62.778
DeformGS 3.373 45.33 88.369 14.022 7.257 8.173 27.754

3D δavg ↑

RAFT [43] a 0.553 0.379 0.222 0.533 0.586 0.619 0.482
RAFT Oracle [43]ab 0.926 0.577 0.411 0.703 0.833 0.808 0.710
OmniMotion Oracle [48] ab 0.987 0.693 0.549 0.864 0.885 0.849 0.805

DynaGS [29] 0.624 0.31 0.042 0.435 0.533 0.527 0.4118
4D-GS [53] 0.902 0.339 0.164 0.583 0.697 0.715 0.5667
DeformGS 0.929 0.522 0.322 0.71 0.856 0.787 0.688

3D Survival ↑

RAFT [43] a 0.945 0.792 0.779 0.822 0.792 0.854 0.831
RAFT Oracle [43]ab 0.986 0.833 0.957 0.872 0.929 0.903 0.913
OmniMotion Oracle [48] ab 1 0.963 1 0.985 0.963 0.933 0.977

DynaGS [29] 0.999 0.99 0.483 0.988 0.992 0.992 0.907
4D-GS [53] 1 0.967 0.834 1 0.999 1 0.967
DeformGS 1 1 1 1 1 1 1

a Method had access to ground truth depth. b Method had access to ground truth trajectories to pick the best camera view.

Table 1: 3D tracking results on the deformable cloth dataset (Figure 1). For each
metric, the methods above the solid line had access to privileged information, see
ab and Section 6.1 for more details. The results suggest that DeformGS outper-
forms the baselines in all averaged metrics, and is competitive with the oracle
models. The results also suggest our novel deformation function architecture,
learning per-Gaussian masks, and physics-inspired regularization losses improve
the tracking performance compared to 4D-GS [53]. We do not consider the oracle
methods to be fair baselines and therefore do not bold their results.

The results are summarized in Table 1. We make the following observations:
(1) DeformGS outperforms baselines RAFT, DynaGS, and 4D-GS, by achieving
a MTE of 55.8% - 76.0% lower compared to the baselines. (2) The discrepancy
between the RAFT oracle model and its averaged result demonstrates the dif-
ficulty arising from frequent self-occlusions. This also points to future research
avenues for additional supervision through optic flow and 2D tracking algorithms
such as RAFT. (3) The oracle models perform very well, this is in part thanks to
the falling and short-horizon nature of these sequences, limiting self-occlusions.
In the real-world we expect much larger errors due to noisy depth and more
challenging occlusions in long-horizon tasks. It would also be unclear what view-
point to choose without access to ground truth trajectories. (4) Scenes with
less texture such as scene 3 perform significantly worse than scenes with strong
texture.

Qualitative Results Figure 4 shows ground truth and inferred trajectories
in scene 5. The results show that especially DynaGS and 4D-GS introduce large
errors as the cloth drapes down. RAFT improves over DynaGS and 4D-GS but
requires accurate depth estimation.



DeformGS 13

(a) RAFT [43] (b) DynaGS [29] (c) 4D-GS [53] (d) DeformGS

Fig. 4: Results on Scene 5: randomly sampled ground-truth trajectories in green,
inferred trajectories in red, and the error of corresponding points in red lines. Compared
to the baseline methods, DeformGS results in fewer errors in 3D tracking.

6.3 Real-World Experiment Setup

Robo360 Data The Robo360 dataset [26] is a 3D omnispective multi-material
robotic manipulation dataset. It covers many different scenario’s, including ma-
nipulation by robot manipulators and humans captured by 86 calibrated cam-
eras. These properties make it an ideal dataset to evaluate the effectiveness of
DeformGS in the real world. We select two scenes: (1) a human folding a larger
duvet and (2) a human folding a smaller cloth. In the cloth folding scene, we
exclude viewpoints where the entire person’s body is visible to eliminate unnec-
essary complexity.

We also subsample the data to demonstrate DeformGS performance with
fewer views. The duvet folding scene contains 17 training views and the cloth
folding scene contains 20 training views.

6.4 Real-World Experiment Results

Real2Sim for Digital Twins Figure 5 shows the 3D tracking overlaid on ren-
dered images, as well as the Gaussian points at each time step. The results
suggest that DeformGS is able to successfully infer smooth and meaningful tra-
jectories in the real world. While no ground truth is available, the trajectories
appear to follow their geometry closely except for a few floating Gaussians.
Hyperparameter tuning of the regularization functions, as well as discarding
Gaussians with a low opacity, might help resolve this.

The point cloud included in this Figure can be used to create a digital twin
after recording the sequence. The digital twin of the duvet, and the entire en-
vironment, can then be used to create more dense supervision for imitation
learning approaches.

Task-Relevant Keypoint Tracking Robotic manipulators can benefit from
tracking task-relevant keypoints, such as the corner of a cloth or the edge of a
jacket. Figure 6 shows a comparison between 4D-GS [53] and DeformGS in 3D
point tracking, evaluated on both duvet and cloth scenes. The results suggest
DeformGS leads to more smooth and overall useful trajectories. The trajectories
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T = 3 T = 9 T = 21 T = 32

Fig. 5: A person manipulating a duvet in the Robo360 [26] dataset, reconstructed
using DeformGS. The top row shows the 4D Gaussians as point clouds, where the
color represents dense correspondences. The bottom row shows rendered views
overlaid with 3D trajectories projected to image space.

from 4D-GS intertwine into more messy trajectories, and appear less physically
plausible. This would hinder the adoption of 3D tracking into robot applications.

4D-GS

Duvet Cloth

DeformGS

Fig. 6: Real-world results comparing our proposed DeformGS against 4D-GS [53]. The
3D trajectories inferred by DeformGS appear more smooth and accurate, whereas 4D-
GS displays more cluttered trajectories.

7 Conclusions

In this work, we address the challenging problem of 3D point-tracking in dy-
namic scenes with deformable objects. We introduced DeformGS, the first ap-
proach that learns continuous deformations for 3D tracking of deformable scenes.
We empirically demonstrate that DeformGS outperforms baseline methods and
achieves both high-quality dynamic scene reconstruction and high-accuracy 3D
tracking on highly deformed cloth objects with occlusions and shadows, both
in simulation and the real world. We also contribute a dataset of six synthetic
scenes to facilitate future research.
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Limitations and Future Work DeformGS, similar to prior work on dy-
namic novel view reconstruction, requires a setup of multiple synchronized and
calibrated cameras, which may require a significant engineering effort in real-
world scenarios. Additionally, significant innovation will be required to achieve
the demonstrated results in real-time, as will be beneficial for scalable robot
applications.

While DeformGS improves upon prior methods, we do observe Gaussians
wandering off in some cases. We also notice the algorithm is relatively sensitive
to the regularization hyper parameters (λmomentum and λiso), this might be re-
solved in the future by adding supervision from state-of-the-art point-tracking
algorithms. These limitations point to promising directions for future research.
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